您现在的位置:首页 >军人考试 > 军转干 > 阅读资料 > 行测 >

                  2022军转干考试:行测数量关系简单易上手之多者合作

                  2022-09-02 16:26:37| 来源:云南中公教育李梦恩

                  在近年来的行测考试数量关系中,工程问题出现频率较高,且难度不大。重点考查对于基本解题方法的掌握。那么今天,云南中公教育带着大家一起了解一下工程问题中较为常见的考点——多者合作。

                   题型特征 

                  多者合作是指多个主体通过一定合作方式完成工作的问题。题干具备描述不同合作方式的典型特征,所以我们可以借助梳理不同合作方式,并结合工作量一定来建立等量关系来解决此类问题。

                   解题方法 

                  常用的方法是特值法。特值法是指将题干中参与计算的过程量用具体数值来表示,从而达到简化计算目的的一种方法。

                  主要分为以下三种设特值的方式:

                  1.已知多个主体完工时间时,可设工作总量为1或完工时间的公倍数。

                  2.已知多个主体效率关系时,一般根据效率关系将效率设为最简比的数值。

                  3.已知多个主体的效率相同时,一般设每个主体的效率为1。

                   例题解析 
                  例1

                  一个工程项目,甲公司单独做需要8天能完成,乙公司单独做需要12天,甲、乙、丙三个公司4天能完成,则由甲、丙公司合作完成此项目共需多少天?

                  A.5 B.6 C.7 D.8

                  【答案】B。

                  思考:在计算过程中发现工作总量x在最后的运算过程中被约去了,并不影响实际计算结果,那么我们是否可以把工作总量设为具体数值方便计算呢?

                  例2

                  甲工程队与乙工程队的效率之比为4:5。一项工程由甲工程队单独做6天,再由乙工程队单独做8天,最后由甲乙两个工程队合作4天刚好完成。如果这项工程由甲工程队或乙工程队单独完成,则甲工程队所需的天数比乙工程队所需的天数多几天?

                  A.3 B.4 C.5 D.6

                  【答案】C。

                  常规解析:结合题干中给出甲乙效率比,结合份数思想,便可设两者工作效率分别为4x、5x,则这项工程的工作总量为4x×6+5x×8+(4x+5x)×4=100x。甲工程队单独完成需要100x÷4x=25天,乙工程队单独完成需要100x÷5x=20天,所求为25-20=5天,故本题选C。

                  思考:同样的,这道题目中x在运算中也被约掉,是不是也可以将甲乙效率直接特具体数值简化运算呢?

                  中公解析:设甲与乙的工作效率分别为4、5,则这项工程的工作总量为4×6+5×8+(4+5)×4=100。甲工程队单独完成需要100÷4=25天,乙工程队单独完成需要100÷5=20天,所求为25-20=5天,选C。

                  例3

                  修一条公路,假设每人每天的工作效率相同,计划180名工人12天完成。工作4天后,因特殊情况,要求提前2天完成任务。则需要增加多少名工人?

                  A.50 B.65 C.70 D.60

                  【答案】D。

                  常规解析:题干中每人每天的工作效率相同,则可设每名工人每天的工作效率为x,则全部的工作总量为180×12x,工作4天完成的工作量180×4x。设要想提前2天完成任务,则需要增加工人a名,则有180×4x+(180+a)×(12-4-2)x=180×12x。解得a=60。故本题选D。

                  思考:此题x被约掉,其数值仍不影响最终结果,仍然可以利用特值法求解!

                  中公解析:设每名工人每天的工作效率为1,则全部的工作总量为180×12,工作4天完成的工作量180×4。设要想提前2天完成任务,则需要增加工人x名,则有180×4+(180+x)×(12-4-2)=180×12。解得x=60,选D。

                  相信大家通过这次中公教育对多者合作的讲解,对这类问题有了更清晰的了解。重点学会以上三种特值法在多者合作问题中的应用,多多练习,熟能生巧,才能真正做到简单易上手!

                  THE END  

                  声明:本站点发布的来源标注为“中公教育”的文章,版权均属中公教育所有,未经允许不得转载。

                  (责任编辑:东东枪)

                  免责声明:本站所提供均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。

                  云南中公教育ynoffcn
                  立即关注

                  30w+粉丝10万+阅读量10000+互动量

                  • 中公微博关注微博关注
                  • 中公QQ群加入QQ群加入
                  微信公众号
                  微博二维码
                  咨询电话(9:30-23:30)

                  400 6300 999

                  在线客服 点击咨询

                  投诉建议:400 6300 999转4

                  亚洲永久精品ww47香蕉图片